WUSDMaster

Smart Contract Audit Report
Prepared for Wault Finance

Date Issued: Aug 19,2021
Project ID: AUDIT2021013
Version: V2.0
Confidentiality Level: Public

INsSpey

CYBERSECURITY PROFESSIOMNAL SERVICE

Public

Report Information

Project ID

Version
Client

Project

Auditor(s)

Author

Reviewer

Confidentiality Level

AUDIT2021013

V1.0

Wault Finance

WUSDMaster

Pongsakorn Sommalai

Pongsakorn Sommalai

Weerawat Pawanawiwat

Public

Version History

Version

2.0

Description

Aug 19,2021 [Update the reassessment information

Author(s)

Pongsakorn Sommalai

1.0

Aug 15,2021 | Full report

Pongsakorn Sommalai

Contact Information

Company

Phone

Telegram

Email

Inspex

(+66) 90 888 7186

t.me/inspexco

audit@inspex.co

https://t.me/inspexco
mailto:audit@inspex.co

Public

Eble of Contents

1. Executive Summary
1.1. Audit Result
1.2. Disclaimer

2. Project Overview
2.1. Project Introduction
2.2.Scope

3. Methodology
3.1. Test Categories
3.2. Audit Items
3.3. Risk Rating

4. Summary of Findings

5. Detailed Findings Information
5.1. Improper Share Calculation in Redeeming Process
5.2. USDT Draining with withdrawUsdt() function
5.3. WUSD Arbitrary Minting with mint() function
5.4. Transaction Ordering Dependence
5.5. WEX Draining by WexWithdrawer Contract
5.6. Improper Modification of Contract State
5.7. Improper Input Validation
5.8. Centralized Control of State Variable
5.9. Missing Kill-Switch Mechanism in WUSDMaster
5.10. Inexplicit Solidity Compiler Version

6. Appendix
6.1. About Inspex
6.2. References

2
3

o o~ B

13
15
17
22
25
27
29
31
34

35
35
36

Public

1. Executive Summary

As requested by Wault Finance, Inspex team conducted an audit to verify the security posture of the
WUSDMaster smart contracts on Aug 11, 2021. During the audit, Inspex team examined all smart contracts
and the overall operation within the scope to understand the overview of WUSDMaster smart contracts.
Static code analysis, dynamic analysis, and manual review were done in conjunction to identify smart
contract vulnerabilities together with technical & business logic flaws that may be exposed to the potential
risk of the platform and the ecosystem. Practical recommendations are provided according to each
vulnerability found and should be followed to remediate the issue.

1.1. Audit Result

In the initial audit, Inspex found 3 high, 2 medium, 3 low, 1 very low, and 1 info-severity issues. With the
project team’s prompt response, 3 high, 2 medium, 3 low, and 1 very low-severity issues were resolved in the
reassessment, while only 1 very low-severity issue was acknowledged by the team. Therefore, Inspex trusts
that WUSDMaster smart contracts have sufficient protections to be safe for public use. However, in the long
run, Inspex suggests resolving all issues found in this report.

This smart contract passes
Inspex’s security verification
standard, and is trustworthy.

Approved by Inspex on Aug 19, 2021

. CYBERSECURITY
iNSpex PROFESSIONAL
SERVICE

1.2. Disclaimer

This security audit is not produced to supplant any other type of assessment and does not guarantee the
discovery of all security vulnerabilities within the scope of the assessment. However, we warrant that this
audit is conducted with goodwill, professional approach, and competence. Since an assessment from one
single party cannot be confirmed to cover all possible issues within the smart contract(s), Inpex suggests
conducting multiple independent assessments to minimize the risks. Lastly, nothing contained in this audit
report should be considered as investment advice.

Inspex Smart Contract Audit Report: AUDIT2021013 (V2.0) 1l

Public

2. Project Overview

2.1. Project Introduction

Wault Finance is a decentralized finance hub that connects all of the primary DeFi use-cases within one
simple ecosystem. In short, an all-in-one DeFi Platform!

WUSD is a brand new stablecoin model that has never been done before, taking inspiration from modern
stablecoin frameworks such as Frax and Olympus, and improving on their foundations by minimizing the
element of uncertainty.

Scope Information:

Project Name WUSDMaster

Website https://app.wault.finance/bsc/index.html#wusd

Smart Contract Type Ethereum Smart Contract

Chain Binance Smart Chain

Programming Language Solidity

Audit Information:

Audit Method Whitebox

Audit Date Aug 11,2021

Reassessment Date Aug 19,2021

The audit method can be categorized into two types depending on the assessment targets provided:

1. Whitebox: The complete source code of the smart contracts are provided for the assessment.
2. Blackbox: Only the bytecodes of the smart contracts are provided for the assessment.

Inspex Smart Contract Audit Report: AUDIT2021013 (V2.0) 2

https://app.wault.finance/bsc/index.html#wusd

Public

2.2. Scope

The following smart contracts were audited and reassessed by Inspex in detail:

Initial Audit: (Commit: 91c541c2flcOac781ddcfb2be6a62555a5ele8d1)

Contract Location (URL)
WUSD https://github.com/WaultFinance/WUSD/blob/91c541c2f1/WUSD.sol
WUSDMaster https://github.com/WaultFinance/WUSD/blob/91c541¢2f1/WUSDMaster.sol
WexWithdrawer https://github.com/WaultFinance/WUSD/blob/91c541c2f1/WexWithdrawer.sol

Reassessment: (Commit: 5f50a2c7ffff7828c70299e8a9217cfbb926b8c1)

WUSD https://github.com/WaultFinance/WUSD/blob/5{50a2c7ff/WUSD.sol
WUSDMaster https://github.com/WaultFinance/WUSD/blob/5f50a2¢7ff/WUSDMaster.sol
WexWithdrawer https://github.com/WaultFinance/WUSD/blob/5{50a2c7ff/WexWithdrawer.sol

The assessment scope covers only the in-scope smart contracts and the smart contracts that they are
inherited from.

W

Inspex Smart Contract Audit Report: AUDIT2021013 (V2.0)

https://github.com/WaultFinance/WUSD/blob/91c541c2f1/WUSD.sol
https://github.com/WaultFinance/WUSD/blob/91c541c2f1/WUSDMaster.sol
https://github.com/WaultFinance/WUSD/blob/91c541c2f1/WexWithdrawer.sol
https://github.com/WaultFinance/WUSD/blob/5f50a2c7ff/WUSD.sol
https://github.com/WaultFinance/WUSD/blob/5f50a2c7ff/WUSDMaster.sol
https://github.com/WaultFinance/WUSD/blob/5f50a2c7ff/WexWithdrawer.sol

Public

3. Methodology

Inspex conducts the following procedure to enhance the security level of our clients’ smart contracts:

1. Pre-Auditing: Getting to understand the overall operations of the related smart contracts, checking
for readiness, and preparing for the auditing

2. Auditing: Inspecting the smart contracts using automated analysis tools and manual analysis by a
team of professionals

3. First Deliverable and Consulting: Delivering a preliminary report on the findings with suggestions
on how to remediate those issues and providing consultation

4. Reassessment: Verifying the status of the issues and whether there are any other complications in
the fixes applied

5. Final Deliverable: Providing a full report with the detailed status of each issue

0-0

Pre-Auditing Auditing First Deliverable Reassessment Final Deliverable

3.1. Test Categories

Inspex smart contract auditing methodology consists of both automated testing with scanning tools and
manual testing by experienced testers. We have categorized the tests into 3 categories as follows:

1. General Smart Contract Vulnerability (General) - Smart contracts are analyzed automatically using
static code analysis tools for general smart contract coding bugs, which are then verified manually to
remove all false positives generated.

2. Advanced Smart Contract Vulnerability (Advanced) - The workflow, logic, and the actual behavior
of the smart contracts are manually analyzed in-depth to determine any flaws that can cause
technical or business damage to the smart contracts or the users of the smart contracts.

3. Smart Contract Best Practice (Best Practice) - The code of smart contracts is then analyzed from
the development perspective, providing suggestions to improve the overall code quality using
standardized best practices.

Inspex Smart Contract Audit Report: AUDIT2021013 (V2.0) 4

Public

3.2. Audit Items

The following audit items were checked during the auditing activity.

Reentrancy Attack

Integer Overflows and Underflows

Unchecked Return Values for Low-Level Calls

Bad Randomness

Transaction Ordering Dependence

Time Manipulation

Short Address Attack

Outdated Compiler Version

Use of Known Vulnerable Component

Deprecated Solidity Features

Use of Deprecated Component

Loop with High Gas Consumption

Unauthorized Self-destruct

Redundant Fallback Function

Business Logic Flaw

Ownership Takeover

Broken Access Control

Broken Authentication

Upgradable Without Timelock

Improper Kill-Switch Mechanism

Improper Front-end Integration

Insecure Smart Contract Initiation

Inspex Smart Contract Audit Report: AUDIT2021013 (V2.0) 5

Public

Denial of Service

Improper Oracle Usage

Memory Corruption

Best Practice

Use of Variadic Byte Array

Implicit Compiler Version

Implicit Visibility Level

Implicit Type Inference

Function Declaration Inconsistency

Token API Violation

Best Practices Violation

3.3. Risk Rating

OWASP Risk Rating Methodology[1] is used to determine the severity of each issue with the following criteria:

- Likelihood: a measure of how likely this vulnerability is to be uncovered and exploited by an attacker.
- Impact: a measure of the damage caused by a successful attack

Both likelihood and impact can be categorized into three levels: Low, Medium, and High.

Severity is the overall risk of the issue. It can be categorized into five levels: Very Low, Low, Medium, High,
and Critical. It is calculated from the combination of likelihood and impact factors using the matrix below.
The severity of findings with no likelihood or impact would be categorized as Info.

Likelihood

Medium Low

High Medium Critical

Inspex Smart Contract Audit Report: AUDIT2021013 (V2.0) 6

https://paperpile.com/c/Q1frcv/hzD0z

Public

4. Summary of Findings

From the assessments, Inspex has found 10 issues in three categories. The following chart shows the number
of the issues categorized into three categories: General, Advanced, and Best Practice.

B Critical

B High
General Medium
Low
Very Low

Advanced Info

Best Practice

The statuses of the issues are defined as follows:

Status Description

The issue has been resolved and has no further complications.

The issue has been resolved with mitigations and clarifications. For the
clarification or mitigation detail, please refer to Chapter 5.

Acknowledged The issue’s risk has been acknowledged and accepted.

The best practice recommendation has been acknowledged.

Inspex Smart Contract Audit Report: AUDIT2021013 (V2.0) 7

Public

The information and status of each issue can be found in the following table:

Category Severity Status
IDX-001 | Improper Share Calculation in Redeeming Advanced
Process

IDX-002 | USDT Draining with withdrawUsdt() function Advanced

IDX-003 | WUSD Arbitrary Minting with mint() function Advanced

IDX-004 | Transaction Ordering Dependence General Medium
IDX-005 | WEX Draining by WexWithdrawer Contract Advanced Medium
IDX-006 | Improper Modification of Contract State Advanced Low
IDX-007 | Improper Input Validation Advanced Low
IDX-008 | Centralized Control of State Variable General Low
IDX-009 | Missing Kill-Switch Mechanism in WUSDMaster Advanced Very Low
IDX-010 | Inexplicit Solidity Compiler Version Best Practice Info

* The mitigations or clarifications by Wault Finance can be found in Chapter 5.

Inspex Smart Contract Audit Report: AUDIT2021013 (V2.0) 8

Public

5. Detailed Findings Information

5.1. Improper Share Calculation in Redeeming Process

ID IDX-001

Target WUSDMaster

Category Advanced Smart Contract Vulnerability

CWE CWE-840: Business Logic Errors

Risk Severity: High

Impact: High
With a front-running attack, an attacker will gain an additional SUSDT from the
WUSDMaster while redeeming SWUSD.

Likelihood:
It is likely that an attacker can perform a front-running attack on a victim. However, a
sufficient redeeming amount is required for the attack to be profitable.

Status

This issue has been fixed by sending the SWUSD to the dead address in the redeem()
function and then burning them after calculating the share in the claim() function in
commit 8e6fd69a78c543a51659ad47ba254b53ad0609d7

5.1.1. Description

For the redeeming process in the WUSDMaster contract, a user must execute the redeem() function to burn
SWUSD token in line 745 and save redeeming amount in line 746 as shown in the following source code:

WUSDMaster.sol

function redeem(uint256 amount) external nonReentrant {
require(amount > @, 'amount cant be zero');
require(usdtClaimAmount[msg.sender] == 0, 'you have to claim first');

wusd.burn(msg.sender, amount);
usdtClaimAmount[msg.sender] = amount;
usdtClaimBlock[msg.sender] = block.number;

emit Redeem(msg.sender, amount);
750 B

Then, in the next block, the user will be able to execute the claimUsdt () function for taking their SUSDT
back. In the claimUsdt () function, the SWEX amount is calculated with the share of SWUSD that users are
redeemingin line 761 as shown below:

Inspex Smart Contract Audit Report: AUDIT2021013 (V2.0) o

Public

WUSDMaster.sol

JEyA function claimUsdt() external nonReentrant {
require(usdtClaimAmount[msg.sender] > 0, 'there is nothing to claim');
require(usdtClaimBlock[msg.sender] < block.number, 'you cant claim yet');

uint256 amount = usdtClaimAmount[msg.sender];
usdtClaimAmount[msg.sender] = 0;

uint256 usdtTransferAmount = amount * (1000 - wexPermille -
treasuryPermille) / 1000;
uint256 usdtTreasuryAmount = amount * treasuryPermille / 1000;
uint256 wexTransferAmount = wex.balanceOf(address(this)) * amount /
(wusd. totalSupply() + amount);
usdt.safeTransfer(treasury, usdtTreasuryAmount);
usdt.safeTransfer(msg.sender, usdtTransferAmount);
wex . approve(address(wswapRouter), wexTransferAmount);
wswapRouter. swapExactTokensForTokensSupportingFeeOnTransferTokens(
wexTransferAmount,
0,
swapPathReverse,
msg.sender,
block.timestamp

);

emit UsdtClaim(msg.sender, amount);
774

As described above, there is a gap between SWUSD burning and the wexTransferAmount calculation. With a
front-running attack, an attacker can use this gap to gain an additional SUSDT from the WUSDMaster
contract. Due to the fact that the SWUSD is burned (usd. totalSupply() is decreased) but the balance of
SWEX in the WUSDMaster is not transferred out (wex. balanceOf (address(this)) is still unchanged.

Please consider the following attack scenario:

- SWEXand SUSDT: 1 SWEX per 1 SUSDT (for the ease of calculation)
- Attacker’s SWUSD balance: 1,000

- Victim’s SWUSD balance: 1,000

- SWUSD total supply: 3,000

- WUSDMaster SWEX balance: 300

First, the attacker detects the victim’s redeeming transaction with 1,000 SWUSD from the transaction pool.
Then, the attacker injects their redeeming transaction with $1,000 SWUSD in front of the victim’s transaction.
The SWUSD total supply will be changed as follows:

1st Attacker Tx: $WUSD total supply = 3,000 - 1,000 = 2,000

Inspex Smart Contract Audit Report: AUDIT2021013 (V2.0) 10

Public

2nd Victim Tx: $WUSD total supply = 2,000 - 1,000 = 1,000

In the next block, the attacker executes the claimUsdt () function and then the following calculation will be

performed.

wexTransferAmount = wex.balanceOf(address(this)) * amount / (wusd.totalSupply() +
amount)

wexTransferAmount = 300 * 1,000 / (1,000 + 1,000) = 150

As the swap rate is 1 SWEX per 1 SUSDT, the attacker gains a total of 1,050 SUSDT from the WUSDMaster
contract instead of 1,000 SUSDT.

5.1.2. Recommendation

Inspex suggests calculating everything in a single execution or transaction to close the calculation gap.

In this case, the wexTransferAmount must be calculated along with reserve the redeemed SWEX in the

redeem() function as shown below:

WUSDMaster.sol

function redeem(uint256 amount) external nonReentrant {
require(amount > @, 'amount cant be zero');
require(usdtClaimAmount[msg.sender] == 0, 'you have to claim first');

uint256 wexTransferAmount = (wex.balanceOf(address(this)) -

wexReserveAmount) * amount / (wusd.totalSupply() + amount);
usdtClaimAmount[msg.sender] = amount;
wexClaimAmount[msg.sender] = wexTransferAmount
wexReserveAmount = wexReserveAmount + wexTransferAmount;
usdtClaimBlock[msg.sender] = block.number;
wusd.burn(msg.sender, amount);

emit Redeem(msg.sender, amount);

753 I

Next, in the claimUsdt () function, the stored state must be used as shown in the following example:

WUSDMaster.sol

iyl function claimUsdt() external nonReentrant {
require(usdtClaimAmount[msg.sender] > 0, 'there is nothing to claim');
require(usdtClaimBlock[msg.sender] < block.number, 'you cant claim yet');

uint256 amount = usdtClaimAmount[msg.sender];
usdtClaimAmount[msg.sender] = 0;

uint256 wexTransferAmount = wexClaimAmount[msg.sender];
wexClaimAmount[msg.sender] = 0;

Inspex Smart Contract Audit Report: AUDIT2021013 (V2.0) 11

Public

wexReserveAmount = wexReserveAmount - wexTransferAmount;

uint256 usdtTransferAmount = amount * (1000 - wexPermille -
treasuryPermille) / 1000;
uint256 usdtTreasuryAmount = amount * treasuryPermille / 1000;

usdt.safeTransfer(treasury, usdtTreasuryAmount);
usdt.safeTransfer(msg.sender, usdtTransferAmount);
wex . approve (address(wswapRouter), wexTransferAmount);
wswapRouter. swapExactTokensForTokensSupportingFeeOnTransferTokens(
wexTransferAmount,
0,
swapPathReverse,
msg.sender,
block.timestamp

);

emit UsdtClaim(msg.sender, amount);
777 B

Please note that the remediations for other issues are not yet applied to the example above.

Inspex Smart Contract Audit Report: AUDIT2021013 (V2.0) 12

Public

5.2. USDT Draining with withdrawUsdt() function

ID IDX-002

Target WUSDMaster

Category Advanced Smart Contract Vulnerability

CWE CWE-840: Business Logic Errors

Risk Severity: High

Impact: High
SUSDT stored in the WUSDMaster can be drained by the WUSDMaster contract owner.

Likelihood:
Only the WUSDMaster contract owner can execute the withdrawUsdt() function.
However, the WUSDMaster contract owner has a lot of motives to perform this attack.

Status

The Wault team has confirmed that the timelock mechanism with a 1-day minimum delay
will be set to the WUSDMaster contract. Although the timelock mechanism with 1 day has
been set, some users might not be able to respond to this action and the manual minting
without any limit can cause a high impact on them.

Even when the timelock has already been implemented, The user must frequently
monitor the timelock contract based on minimum delay.

5.2.1. Description

In the WUSDMaster contract, the SUSDT can be withdrawn to the strategist address by the contract owner
as shown in the following source code:

WUSDMaster.sol

WLl function withdrawUsdt(uint256 amount) external onlyOwner {
require(strategist != address(@), 'strategist not set');
usdt.safeTransfer(strategist, amount);

emit UsdtWithdrawn(amount);

Moreover, the contract owner can set the strategist state by using the setStrategistAddress() function
as shown below:

WUSDMaster.sol
FAM function setStrategistAddress(address _strategist) external onlyOwner {
692 strategist = _strategist;
693

Inspex Smart Contract Audit Report: AUDIT2021013 (V2.0) 15

Public

694 emit StrategistAddressChanged(strategist);
695 [

Please consider the following attack scenario:

- The contract owner changes the strategist state to their wallet by using the
setStrategistAddress() function.

- The contract owner executes the withdrawUsdt () function to drain all SUSDT from the WUSDMaster
contract.

5.2.2. Recommendation

Inspex suggests disabling the capability to transfer SUSDT out from the WUSDMaster contract to prevent
anyone from draining the collateral token by removing the withdrawUsdt() and setStrategistAddress()
functions.

Inspex Smart Contract Audit Report: AUDIT2021013 (V2.0) 14

Public

5.3. WUSD Arbitrary Minting with mint() function

ID IDX-003

Target WUSD

Category Advanced Smart Contract Vulnerability

CWE CWE-840: Business Logic Errors

Risk Severity: High

Impact: High
The WUSD contract owner can arbitrarily mint the SWUSD token without any limit.

Likelihood:
Only the WUSD contract owner can execute the transferMintership() function.
However, the WUSD contract owner has a lot of motive to perform this attack.

Status

The timelock mechanism with a 1-day minimum delay already has been set to the WUSD
contract. Although the timelock mechanism with 1 day has been set, some users might
not be able to respond to this action and the manual minting without any limit can cause
a high impact on them.

- WUSD contract: 0x3ff997eaea488a082fb7efc8e6b9951990d0c3ab
- Timelock contract: 0x7a8d6c614635657660651db4802da08d17ddbbff

Even when the timelock has already been implemented, the user must frequently monitor
the timelock contract based on minimum delay.

5.3.1. Description

In the WUSD contract, the mint () function is protected by the onlyMinter modifier as shown below:

WUSD.sol

LY function mint(address account, uint256 amount) external onlyMinter {
598 _mint(account, amount);
599 W

The onlyMinter only allows a specific address to perform the mint () function as follows:

WUSD.sol
yERB modifier onlyMinter() {
234 require(_minter == _msgSender(), "Mintable: caller is not the minter");
235 _
236

Inspex Smart Contract Audit Report: AUDIT2021013 (V2.0) 15

Public

The current _minter state is set to WUSDMaster contract that will mint only necessary SWUSD. However, the
_minter state can still be set by using transferMintership() function by the contract owner as shown
below:

WUSD.sol

wZvB function transferMintership(address newMinter) public virtual onlyOwner {
require(newMinter != address(0), "Mintable: new minter is the zero
address");
emit MintershipTransferred(_minter, newMinter);
_minter = newMinter;

246

Nevertheless, the timelock mechanism with a 1-day minimum delay already has been set to the WUSD
contract:

- WUSD contract: 0x3ff997eaea488a082fb7efc8e6b9951990d0c3ab
- Timelock contract: 0x7a8d6c614635657660651db4802da08d17ddbbff

Although the timelock mechanism with 1 day has been set, some users might not be able to respond to this
action and the manual minting without any limit can cause high impact to them.

5.3.2. Recommendation

Inspex suggests disabling the owner of the WUSD contract by executing the renounceOwnership() function
to prevent the manual minting without any limiting action.

Inspex Smart Contract Audit Report: AUDIT2021013 (V2.0) 16

Public

5.4. Transaction Ordering Dependence

ID IDX-004

Target WUSDMaster

Category Advanced Smart Contract Vulnerability

CWE CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization
(‘Race Condition’)

Risk Severity:

Impact:

Attackers can perform a front-running attack to gain profit in the stake() and
claimUsdt() functions. However, only a portion of the input amount, which can be set up
to 50%, will face this issue.

Likelihood:

It is very easy to perform the attack. Moreover, anyone that monitors the BSC’s transaction
pool can attack users with this issue. However, maxStakeAmount state is used to limit the
staking amount, resulting in lower profit and motivation in exploiting the stake()
function.

Status

This issue has been fixed as recommended in commit
de61d93cd7a35213484827¢cf32533919c34e732e.

5.4.1. Description

When users want to mint the SWUSD, the stake() and claimWusd() functions of WUSDMaster contract will
swap a portion of input SUSDT or SWUSD amount which can be up to 50% to SWEX

During the swapping of tokens, there is a potential bad-rate swapping since
wswapRouter. swapExactTokensForTokensSupportingFeeOnTransferTokens() takes 0 as
amountOutMin in the stake() function at line 718 and claimUsdt() function at line 767. This means that
there is no price tolerance in the swapping process.

WUSDMaster.sol

IRl function stake(uint256 amount) external nonReentrant {

require(amount > @, 'amount cant be zero');
require(wusdClaimAmount[msg.sender] == 0, 'you have to claim first');
require(amount <= maxStakeAmount, 'amount too high');

usdt.safeTransferFrom(msg.sender, address(this), amount);
if(feePermille > 0) {
uint256 feeAmount = amount * feePermille / 1000;
usdt.safeTransfer(treasury, feeAmount);

Inspex Smart Contract Audit Report: AUDIT2021013 (V2.0) 17

Public

amount = amount - feeAmount;
}
uint256 wexAmount = amount * wexPermille / 1000;
usdt.approve(address(wswapRouter), wexAmount);
wswapRouter. swapExactTokensForTokensSupportingFeeOnTransferTokens(
wexAmount,
o,
swapPath,
address(this),
block.timestamp

);

wusdClaimAmount[msg.sender] = amount;
wusdClaimBlock[msg.sender] = block.number;

emit Stake(msg.sender, amount);

WUSDMaster.sol

function claimUsdt() external nonReentrant {
require(usdtClaimAmount[msg.sender] > 0, 'there is nothing to claim');
require(usdtClaimBlock[msg.sender] < block.number, 'you cant claim yet');

uint256 amount = usdtClaimAmount[msg.sender];
usdtClaimAmount[msg.sender] = 0;

uint256 usdtTransferAmount = amount * (1000 - wexPermille -
treasuryPermille) / 1000;
uint256 usdtTreasuryAmount = amount * treasuryPermille / 1000;
uint256 wexTransferAmount = wex.balanceOf(address(this)) * amount /
(wusd. totalSupply() + amount);
usdt.safeTransfer(treasury, usdtTreasuryAmount);
usdt.safeTransfer(msg.sender, usdtTransferAmount);
wex . approve (address(wswapRouter), wexTransferAmount);
wswapRouter. swapExactTokensForTokensSupportingFeeOnTransferTokens(
wexTransferAmount,
o,
swapPathReverse,
msg.sender,
block.timestamp

);

emit UsdtClaim(msg.sender, amount);

An example below demonstrates the impact of bad-rate swapping:

Inspex Smart Contract Audit Report: AUDIT2021013 (V2.0) 18

Public

The formula to calculate the output price is as follows (swapping fee is ignored):

output = amountIn * reserveOut / (reserveIn + amountIn)

Assuming the reserve amounts of tokens in the pool before being manipulated are as follows:

reserveUSDT reserveWEX

The contract swaps 5 SUSDT to SWEX.

output = 5 * 50 / (50 + 5) = 4.54

As a result, swapping 5 SUSDT will get 4.54 SWEX.

However, if this transaction is being front-run with 10 SUSDT, the price will be worse as follows:

reserveUSDT reserveWEX

60 41.67

The contract swaps 5 SUSDT to SWEX.

output = 5 * 41.67 / (60 + 5) = 3.2053

After that, the current reserve amount of tokens in pool will be as follows:

reserveUSDT reserveWEX

65 38.46

Finally, the front-runner can swap their 8.33 SWEX back to SUSDT. They will gain 11.57 SUSDT back as shown
below:

output = 8.33 x 65 / (38.46 + 8.33) = 11.57

As a result, swapping 5 SUSDT will get only 3.2053 SWEX instead of 4.45 SWEX. Moreover, the front-runner will
gain 1.57 SUSDT from the swap pool.

However, the WUSDMaster contract has the mechanism to limit the staking amount in line 706 as shown
below:

WUSDMaster.sol

YRR function stake(uint256 amount) external nonReentrant {
704 require(amount > @, 'amount cant be zero');

Inspex Smart Contract Audit Report: AUDIT2021013 (V2.0) 19

Public

require(wusdClaimAmount[msg.sender] == 0, 'you have to claim first');
require(amount <= maxStakeAmount, 'amount too high');

usdt.safeTransferFrom(msg.sender, address(this), amount);
if(feePermille > 0) {
uint256 feeAmount = amount * feePermille / 1000;
usdt.safeTransfer(treasury, feeAmount);
amount = amount - feeAmount;
}
uint256 wexAmount = amount * wexPermille / 1000;
usdt.approve(address(wswapRouter), wexAmount);
wswapRouter. swapExactTokensForTokensSupportingFeeOnTransferTokens(
wexAmount,
0,
swapPath,
address(this),
block.timestamp

);

wusdClaimAmount[msg.sender] = amount;
wusdClaimBlock[msg.sender] = block.number;

emit Stake(msg.sender, amount);

This mechanism reduces the attacker’s profit and motivation in exploiting the stake () function.

This mechanism is implemented to only the stake() function and will work only when maxStakeAmount is
set to a small amount based on the current TVL of the swap pool.

5.4.2. Recommendation

Inspex suggests calculating the amountOutMin from the front-end, forwarding it through the function
parameters, and setting it as the price tolerance of swap function as shown in the following examples:

WUSDMaster.sol

IRl function stake(uint256 amount, uint256 amountOutMin) external nonReentrant {
require(amount > @, 'amount cant be zero');
require(wusdClaimAmount[msg.sender] == 0, 'you have to claim first');
require(amount <= maxStakeAmount, 'amount too high');

usdt.safeTransferFrom(msg.sender, address(this), amount);
if(feePermille > 0) {
uint256 feeAmount = amount * feePermille / 1000;
usdt.safeTransfer(treasury, feeAmount);
amount = amount - feeAmount;

Inspex Smart Contract Audit Report: AUDIT2021013 (V2.0) 20

Public

uint256 wexAmount = amount * wexPermille / 1000;
usdt.approve(address(wswapRouter), wexAmount);
wswapRouter. swapExactTokensForTokensSupportingFeeOnTransferTokens(
wexAmount,
amountOutMin,
swapPath,
address(this),
block.timestamp

);

wusdClaimAmount[msg.sender] = amount;
wusdClaimBlock[msg.sender] = block.number;

emit Stake(msg.sender, amount);

WUSDMaster.sol

function claimUsdt(uint256 amountOutMin) external nonReentrant {
require(usdtClaimAmount[msg.sender] > 0, 'there is nothing to claim');
require(usdtClaimBlock[msg.sender] < block.number, 'you cant claim yet');

uint256 amount = usdtClaimAmount[msg.sender];
usdtClaimAmount[msg.sender] = 0;

uint256 usdtTransferAmount = amount * (1000 - wexPermille -
treasuryPermille) / 1000;
uint256 usdtTreasuryAmount = amount * treasuryPermille / 1000;
uint256 wexTransferAmount = wex.balanceOf(address(this)) * amount /
(wusd. totalSupply() + amount);
usdt.safeTransfer(treasury, usdtTreasuryAmount);
usdt.safeTransfer(msg.sender, usdtTransferAmount);
wex . approve(address(wswapRouter), wexTransferAmount);
wswapRouter. swapExactTokensForTokensSupportingFeeOnTransferTokens(
wexTransferAmount,
amountOutMin,
swapPathReverse,
msg.sender,
block.timestamp

);

emit UsdtClaim(msg.sender, amount);

Please note that the remediations for other issues are not yet applied to the example above.

Inspex Smart Contract Audit Report: AUDIT2021013 (V2.0) 21

Public

5.5. WEX Draining by WexWithdrawer Contract

ID IDX-005

Target WexWithdrawer

Category Advanced Smart Contract Vulnerability

CWE CWE-840: Business Logic Errors

Risk Severity:

Impact:
SWEX stored in the WUSDMaster can be drained by the WexWithdrawer contract owner.

Likelihood:

Only WexWithdrawer contract owner can execute withdraw(), deposit(),
initiateMasterChange(), and changeMaster() functions. However, the
WexWithdrawer contract owner has a lot of motive to perform this attack.

Status

The built-in timelock mechanism with 2 days minimum delay already has been set to the
changeMaster () function of WexWithdrawer contract. However, some users might not be
able to respond to this action and the token draining can cause a high impact on them.

Even when the timelock has already been implemented, the user must frequently monitor
the timelock contract based on minimum delay.

5.5.1. Description

In the WexWithdrawer contract, the withdraw() function can be used to withdraw all SWEX from the
WUSDMaster contract as shown below:

WexWithdrawer.sol

Ll function withdraw(uint256 amount) external onlyOwner {
wusdMaster.withdrawWex(amount);

emit Withdraw(amount);
512

Moreover, the SWEX can be transferred back to the WUSDMaster contract by using the deposit() function as

follows:

WexWithdrawer.sol
W function deposit(uint256 amount) external onlyOwner {
515 wex.safeTransfer(address(wusdMaster), amount);
516
517 emit Deposit(amount);

Inspex Smart Contract Audit Report: AUDIT2021013 (V2.0) 22

Public

=

Unfortunately, the wusdMaster state can be changed by using initiateMasterChange() and

changeMaster () functions as follows:

WexWithdrawer.sol

YLl function initiateMasterChange(uint256 timestamp, IWUSDMaster _wusdMaster)
external onlyOwner {
require(!isMasterChangeInitiated, 'change already initiated');
require(timestamp >= block.timestamp + 48 hours, 'timestamp not valid!');
require(address(_wusdMaster) != address(0),"zero address");

isMasterChangelnitiated = true;
masterChangeTimestamp = timestamp;
newWusdMaster = _wusdMaster;

emit InitiateMasterChange(timestamp, address(_wusdMaster));
530 W

WexWithdrawer.sol

Yyl function changeMaster() external onlyOwner {
require(isMasterChangeInitiated, 'change not initiated');
require(block.timestamp >= masterChangeTimestamp, 'not yet possible');

wusdMaster = newWusdMaster;
isMasterChangelnitiated = false;
masterChangeTimestamp = 0;

newWusdMaster = IWUSDMaster(address(0));

emit MasterChanged(address(wusdMaster));
553 I

Please consider the following attack scenario:

- The attacker performs the initiateMasterChange() function in order to prepare the changing of
wusdMaster state to their wallet.

- After waiting for 2 days, the attacker executes the withdraw() function to drain all SWEX from the
WUSDMaster contract to the WexWithdrawer contract.

- The attacker executes the chargemaster() function to change the wusdMaster state to their wallet.

- The attacker executes the deposit () function to transfer all SWEX to their wallet.

As can be seen above, the timelock mechanism with 2 days minimum delay has already been set to protect
the changeMaster () function of the WexWithdrawer contract. However, some users might not be able to
respond to this action and the token draining can cause a high impact on them.

Inspex Smart Contract Audit Report: AUDIT2021013 (V2.0) 23

Public

5.5.2. Recommendation

Inspex suggests disabling the capability to change the wusdMaster contract by removing the
initiateMasterChange(), cancelMasterChange(), and changeMaster() functions from the

WexWithdrawer contract.

In case that the WexWithdrawer cannot be modified and redeployed, Inspex suggests implementing a
shield contract that forwards only the withdraw() and deposit() functions to the WexWithdrawer

contract.

Inspex Smart Contract Audit Report: AUDIT2021013 (V2.0) 24

Public

5.6. Improper Modification of Contract State

ID IDX-006

Target WUSDMaster

Category Advanced Smart Contract Vulnerability

CWE CWE-840: Business Logic Errors

Risk Severity:

Impact:
Changing the wexPermille or treasuryPermille states can cause the SWUSD to be
unredeemable, or cause SUSDT to be unusable and remain in the WUSDMaster contract.

Likelihood:
Itis very unlikely that the wexPermille or treasuryPermille state will be changed.

Status

The Wault team has clarified that these functions will be used only if it is governed by the
holders. If such proposal is approved and the Wault team will decide to increase SWEX
collateral to 15%, the Wault team will perform the following steps:

1. Withdraw a portion of SUSDT from WUSDMaster contract
2. Buy SWEX with withdrawn SUSDT
3. Deposit the SWEX acquired to WUSDMaster contract

However, without performing the above steps, the risk still remains. The user should
monitor the increasing collateral process when this process is performed.

5.6.1. Description

In the WUSDMaster contract, the wexPermille and treasuryPermille states are used to calculate the
SUSDT amount that will be sent to the user in lines 759 and 763 as shown below:

WUSDMaster.sol

function claimUsdt() external nonReentrant {
require(usdtClaimAmount[msg.sender] > 0, 'there is nothing to claim');
require(usdtClaimBlock[msg.sender] < block.number, 'you cant claim yet');

uint256 amount = usdtClaimAmount[msg.sender];
usdtClaimAmount[msg.sender] = 0;

uint256 usdtTransferAmount = amount * (1000 - wexPermille -
treasuryPermille) / 1000;

uint256 usdtTreasuryAmount = amount * treasuryPermille / 1000;

uint256 wexTransferAmount = wex.balanceOf(address(this)) * amount /
(wusd. totalSupply() + amount);

Inspex Smart Contract Audit Report: AUDIT2021013 (V2.0) 25

Public

usdt.safeTransfer(treasury, usdtTreasuryAmount);
usdt.safeTransfer(msg.sender, usdtTransferAmount);
wex . approve (address(wswapRouter), wexTransferAmount);
wswapRouter. swapExactTokensForTokensSupportingFeeOnTransferTokens(
wexTransferAmount,
o,
swapPathReverse,
msg.sender,
block.timestamp

);

emit UsdtClaim(msg.sender, amount);

The wexPermille and treasuryPermille can be changed by using setFeePermille() and
setTreasuryPermille() functions as follows:

WUSDMaster.sol

function setTreasuryPermille(uint _treasuryPermille) external onlyOwner {
require(_treasuryPermille <= 50, 'treasuryPermille too high!');
treasuryPermille = _treasuryPermille;

emit TreasuryPermilleChanged(treasuryPermille);

3

function setFeePermille(uint _feePermille) external onlyOwner {
require(_feePermille <= 20, 'feePermille too high!');
feePermille = _feePermille;

emit FeePermilleChanged(feePermille);
683

By changing the wexPermille ortreasuryPermille states,the transferred SUSDT amount will also be
changed. Therefore, if the values of wexPermille or treasuryPermille states are reduced, some of
SWUSD will be unclaimable. Vice versa, if the values of wexPermille or treasuryPermille states are
increased, some of SUSDT will be stuck and unusable in the WUSDMaster contract.

5.6.2. Recommendation

Inspex suggests making the wexPermille and treasuryPermille states unchangeable by removing
setTreasuryPermille() and setFeePermille() functions from the WUSDMaster contract.

Inspex Smart Contract Audit Report: AUDIT2021013 (V2.0) 26

Public

5.7. Improper Input Validation

ID IDX-007

Target WUSDMaster

Category Advanced Smart Contract Vulnerability

CWE CWE-284: Improper Access Control

Risk Severity:

Impact:
With improper setting of swap path, the user’s tokens will be unusable and stuck in the
WUSDMaster contract.

Likelihood:
It is very unlikely that the swap path will be set as an improper value.

Status

This issue has been fixed as recommended in commit
de61d93cd7a35213484827¢cf32533919c34e732e.

5.7.1. Description

The swap path in the WUSDMaster contract can be freely set to any value by using the setSwapPath()
function as shown below:

WUSDMaster.sol

B W function setSwapPath(address[] calldata _swapPath) external onlyOwner {
swapPath = _swapPath;

emit SwapPathChanged(swapPath);
662 [

By setting the improper value to the swapPath state, when the user performs stake() function, the user’s
token will be swapped to an unexpected token (not SWEX) in line 716-722 and stuck in the WUSDMaster
contract as shown below:

WUSDMaster.sol

IRl function stake(uint256 amount) external nonReentrant {

require(amount > @, 'amount cant be zero');
require(wusdClaimAmount[msg.sender] == 0, 'you have to claim first');
require(amount <= maxStakeAmount, 'amount too high');

usdt.safeTransferFrom(msg.sender, address(this), amount);
if(feePermille > 0) {

Inspex Smart Contract Audit Report: AUDIT2021013 (V2.0) 27

Public

uint256 feeAmount = amount * feePermille / 1000;
usdt.safeTransfer(treasury, feeAmount);
amount = amount - feeAmount;
}
uint256 wexAmount = amount * wexPermille / 1000;
usdt.approve(address(wswapRouter), wexAmount);
wswapRouter. swapExactTokensForTokensSupportingFeeOnTransferTokens(
wexAmount,
0,
swapPath,
address(this),
block.timestamp

);

wusdClaimAmount[msg.sender] = amount;
wusdClaimBlock[msg.sender] = block.number;

emit Stake(msg.sender, amount);

5.7.2. Recommendation

Inspex suggests validating that the first element of swapPath must be SUSDT and the last element must be
SWEX as shown in the following example:

WUSDMaster.sol

Bl function setSwapPath(address[] calldata _swapPath) external onlyOwner {
require(_swapPath.length > 1 && _swapPath[0] == address(usdt) &&

_swapPath[_swapPath.length - 1] == address(wex), "invalid _swapPath")
swapPath = _swapPath;

emit SwapPathChanged(swapPath);

Inspex Smart Contract Audit Report: AUDIT2021013 (V2.0) 28

Public

5.8. Centralized Control of State Variable

ID IDX-008

Target WUSDMaster

Category General Smart Contract Vulnerability

CWE CWE-710: Improper Adherence to Coding Standard

Risk Severity:

Impact:
The controlling authorities can change the critical state variables to gain additional profit.
Thus, it is unfair to the other users.

Likelihood:
There is potentially nothing to restrict the changes from being done by the owner;
however, the changes are limited by fixed values in the smart contracts.

Status

The Wault team confirmed that the timelock mechanism with a 1-day minimum delay will
be implemented when the WUSDMaster contract is deployed.

5.8.1. Description

Critical state variables can be updated at any time by the controlling authorities. Changes in these variables
can cause impacts to the users, so the users should accept or be notified before these changes are effective.

However, as the contract is not yet deployed, there is potentially no constraint to prevent the authorities
from modifying these variables without notifying the users.

The controllable privileged state update functions are as follows:

File Contract Function Modifier
WUSDMaster.sol (L:658) | WUSDMaster setSwapPath() onlyOwner
WUSDMaster.sol (L:664) | WUSDMaster setWexPermille() onlyOwner
WUSDMaster.sol (L:671) | WUSDMaster setTreasuryPermille() onlyOwner
WUSDMaster.sol (L:678) | WUSDMaster setFeePermille() onlyOwner
WUSDMaster.sol (L:685) | WUSDMaster setTreasuryAddress() onlyOwner
WUSDMaster.sol (L:691) | WUSDMaster setStrategistAddress() onlyOwner
WUSDMaster.sol (L:697) | WUSDMaster setMaxStakeAmount() onlyOwner

Inspex Smart Contract Audit Report: AUDIT2021013 (V2.0) 29

Public

WUSDMaster.sol (L:776) | WUSDMaster

withdrawUsdt()

onlyOwner

5.8.2. Recommendation

In the ideal case, the critical state variables should not be modifiable to keep the integrity of the smart

contract.

However, if modifications are needed, Inspex suggests limiting the use of these functions via the following

options:

- Implementing community-run governance to control the use of these functions
- Using a timelock contract to delay the changes for a sufficient amount of time

Inspex Smart Contract Audit Report: AUDIT2021013 (V2.0)

30

Public

5.9. Missing Kill-Switch Mechanism in WUSDMaster

ID IDX-009

Target WUSDMaster

Category Advanced Smart Contract Vulnerability

CWE CWE-710: Improper Adherence to Coding Standards

Risk Severity:

Impact:
If an attack happens when the contract is unpassable, further damage cannot be
prevented.

Likelihood:
It is unlikely for the kill-switch mechanism to be required

Status

This issue has been fixed as recommended by adding a kill-switch mechanism and
implementing an emergency redeeming process in commit
de61d93cd7a35213484827cf32533919c34e732e.

5.9.1. Description

Immutability is one of the core principles of the blockchain. If the contract is designed to be non-upgradable,
there is no mechanism to prevent contracts from potential failures.

For example, when the WUSDMaster contract is deployed, there is no mechanism to protect the contract
from potential failures.

WUSDMaster.sol

IRl function stake(uint256 amount) external nonReentrant {

require(amount > @, 'amount cant be zero');
require(wusdClaimAmount[msg.sender] == 0, 'you have to claim first');
require(amount <= maxStakeAmount, 'amount too high');

usdt.safeTransferFrom(msg.sender, address(this), amount);
if(feePermille > 0) {
uint256 feeAmount = amount * feePermille / 1000;
usdt.safeTransfer(treasury, feeAmount);
amount = amount - feeAmount;
3
uint256 wexAmount = amount * wexPermille / 1000;
usdt.approve(address(wswapRouter), wexAmount);
wswapRouter. swapExactTokensForTokensSupportingFeeOnTransferTokens(

Inspex Smart Contract Audit Report: AUDIT2021013 (V2.0) 31

Public

wexAmount,

0)

swapPath,
address(this),
block.timestamp

);

wusdClaimAmount[msg.sender] = amount;
wusdClaimBlock[msg.sender] = block.number;

emit Stake(msg.sender, amount);

The kill-switch mechanism should be added to the following functions of WUSDContract

- stake() function

- claimWusd() function

- redeem() function (the emergency redeeming function should be implemented)

- claimUsdt () function (the emergency redeeming function should be implemented)

5.9.2. Recommendation

Inspex recommends using the emergency stop pattern to protect the contract from potential failures.

In this case, it is recommended to inherit the Pauseable abstraction contract of OpenZeppelin to the
WUSDMaster contract as follows:

WUSDMaster.sol

A contract WUSDMaster is Ownable, Withdrawable, ReentrancyGuard, Pauseable {

Then, implement the pause() and unpause() function as shown below:

WUSDMaster.sol

function pause() external onlyOwner {
_pause();

3

function unpause() external onlyOwner {
_unpause();

b

Finally, add the whenNotPaused modifier to critical external functions, for example:

WUSDMaster.sol

YRR function stake(uint256 amount) external whenNotPaused nonReentrant {
704 require(amount > @, 'amount cant be zero');

Inspex Smart Contract Audit Report: AUDIT2021013 (V2.0) 32

Public

require(wusdClaimAmount[msg.sender] == 0, 'you have to claim first');
require(amount <= maxStakeAmount, 'amount too high');

usdt.safeTransferFrom(msg.sender, address(this), amount);
if(feePermille > 0) {
uint256 feeAmount = amount * feePermille / 1000;
usdt.safeTransfer(treasury, feeAmount);
amount = amount - feeAmount;
}
uint256 wexAmount = amount * wexPermille / 1000;
usdt.approve(address(wswapRouter), wexAmount);
wswapRouter. swapExactTokensForTokensSupportingFeeOnTransferTokens(
wexAmount,
0,
swapPath,
address(this),
block.timestamp

);

wusdClaimAmount[msg.sender] = amount;
wusdClaimBlock[msg.sender] = block.number;

emit Stake(msg.sender, amount);

Please note that the remediations for other issues are not yet applied to the example above.

Inspex Smart Contract Audit Report: AUDIT2021013 (V2.0) 33

Public

5.10. Inexplicit Solidity Compiler Version

IDX-010

WUSD
WUSDMaster
WexWithdrawer

Category Smart Contract Best Practice

CWE CWE-1104: Use of Unmaintained Third Party Components

Risk Severity:
Impact: None

Likelihood: None

Only WUSDMaster contract has been fixed as recommended in the commit
de61d93cd7a35213484827cf32533919c34e732e.

5.10.1. Description

The Solidity compiler versions declared in the smart contracts were not explicit. Each compilation may be
done using different compiler versions, which may potentially result in the compatibility issues, for example:

WUSD.sol
Il // SPDX-License-Identifier: MIT
2
kKl pragma solidity "0.8.0;

The following table contains all targets which the inexplicit compiler version is declared.

Contract Version

WUSD 70.8.0
WUSDMaster 70.8.0
WexWithdrawer 70.8.0

5.10.2. Recommendation

Inspex suggests fixing the solidity compiler to the latest stable version. At the time of the audit, the latest
stable version of Solidity compiler in major 0.8 is v0.8.6.

Inspex Smart Contract Audit Report: AUDIT2021013 (V2.0) 34

Public

6. Appendix
6.1. About Inspex

CYBERSECURITY
PROFESSIONAL
SERVICE

Inspex is formed by a team of cybersecurity experts highly experienced in various fields of cybersecurity. We
provide blockchain and smart contract professional services at the highest quality to enhance the security of
our clients and the overall blockchain ecosystem.

Follow Us On:

Website https://inspex.co

Twitter @lnspexCo

Facebook https://www.facebook.com/InspexCo

Telegram @inspex_announcement

Inspex Smart Contract Audit Report: AUDIT2021013 (V2.0) 35

https://inspex.co
https://twitter.com/InspexCo
https://www.facebook.com/InspexCo
https://t.me/inspex_announcement

Public

6.2. References

[1] “OWASP Risk Rating Methodology.” [Online]. Available:
https://owasp.org/www-community/OWASP_Risk_Rating_Methodology. [Accessed: 08-May-2021]

Inspex Smart Contract Audit Report: AUDIT2021013 (V2.0) 36

http://paperpile.com/b/Q1frcv/hzD0z
https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
http://paperpile.com/b/Q1frcv/hzD0z

iNspey

CYBERSECURITY PROFESSIONAL SERVICE

